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It is only by neglecting self-adsorption (a treatment referred to as "pure-energy," 
PE) that one gets textbook thermodynamics of a surface, based upon the tension 
5 e as a function of temperature T, and one finds negative specific heat for hot 
water. Any lower critical point and PE provides the other exciting negatives: 
nicotine-and-water is an example. In order to include adsorption, 5 ~ must be 
known in terms of T and chemical potentials as independent variables; this forces 
measurement of the tension of curved menisci. Will the minus signs remain? 

1. M O T I V A T I O N S  

1.1. Pure Energy (PE) or Not? 

Two systems s tand out  as unusua l ly  and  s imi lar ly  s imple ,  in each having 
but  two d imens ions ,  only  one o f  which is intensive,  in s t andard ,  e l emen ta ry  
t h e r m o d y n a m i c s  (e.g., Z e m a n s k y  and  Di t tman ,  1981): these are b l a c k b o d y  
rad ia t ion ,  and  a surface be tween  two fluids. Fo r  P lanck ' s  b l a c k b o d y  radi-  

at ion,  the en t ropy  S is a func t ion  S(U,  V) o f  energy U and vo lume  V only,  
with no i n d e p e n d e n t  coo rd ina t e  to signify n u m b e r  o f  pho tons  N - - s u c h  a 
th i rd  coo rd ina t e  can be usefu l ly  m a n a g e d  to discuss,  for  example ,  wha t  
as t rophys ic is t s  call  C o m p t o n i z a t i o n ,  but  that  is ano the r  story. The usual  
vers ion o f  P lanck ' s  s tory is in a context  where  the chemica l  p o t e n t i a l / x  for 
pho tons  is zero,  which does  va l ida te  the s imple  account .  2 

For  the surface,  en t ropy  S is aga in  p resen ted  as a funct ion  o f  energy 
U and  now area  A only,  in the  t rea tment  I call here the mode l  of  pure 

~Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201. 
2Departing from ~ =0 for light is a topic in my unpublished notes, Thermodynamics for 
Beginners and Mathematicians. 
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energy, PE. Yet thermodynamics of either adjacent bulk informs us that 
here the chemical potential is not usually zero, hence that PE may be 
oversimple. Accordingly, I sketch a more complete story using S( U, A, N) ,  
parallel to a bulk's S( U, V, N) .  Here N is an amount of  chemical associated 
with the surface per se; for lack of a better term, I call this complication 
"self-adsorption." Are the extra terms needed to treat N indeed negligible, 
justifying PE, or, i f  not, just  what more needs measurement to properly organize 
the thermodynamics of  a surface empirically ? 

I will find no reason to regard the extra terms negligible; that will 
complicate the usual study of 50(T) to a study of 50(T,/z), the surface 
tension 5 0 as a function of temperature T and chemical potential /x as 
independent variables. Since for flat surfaces T and /~ are dependent, this 
will force us to generalize to curved surfaces. 

Indeed, chemical potentials appear  very much in this way already in 
Gibbs (1948). The main point here, then, is the negative quantities suggested 
by PE, and whether these will remain in the full treatment. 

1.2. Inequalities 

The root of  thermodynamics is the second law, an inequality; hence, 
our deepest concern is with inequalities. 3 From Boltzmann's statistical 
interpretation of entropy S as a sum ~ p ln(1/p)  of  nonnegative terms, we 
have 

S-->0 (1) 

an inequality simpler than the second law. But this positivity of  entropy 
applies to a "complete system". Is (1) yet true for that part of entropy due 
to a surface, or may the impossibility of  parting the surface physically from 
bulks allow the entropy s per unit area to sometimes be negative? 

Is the energy u per unit area sometimes negative? 
A standard argument (given later) which uses the second law informs 

us that, for the function S that gives the entropy of a bulk chemical system, 
the body 

x O ~  S(XI  . . . ,  X v) 

where x 1, . . . ,  x ~ are v independent additive extensive variables, is convex. 
This is usually called "stability"; I will use "convexity." Is there an analogous 
fact of  convexity for surfaces ? 

3Indeed ,  i f  the  e q u a t i o n s  be  v i ewed  as ident i t ies ,  t hey  are  w i t h o u t  con ten t :  as we m a y  a l w a y s  

d o u b t  o u r  m o d e l ,  this  is o f  cou r se  a n  o v e r s t a t e m e n t !  
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1.3. Water, Nicotine 

I will show that assuming PE for the interface between hot water and 
steam is not consistent with convexity. And near a lower critical point, PE 
will also give negative entropy and energy per unit area; an example is 
nicotine and water. 

1.4. Flatland? 

Were we to imagine a surface as a universe complete unto itself, 
"Fla t land" (Abbott, 1953), then entropy and energy would be positive, and 
even the proof  of  convexity for bulks would go through, with "area"  in 
place of  "volume."  Examples where these inequalities are reversed would 
then reject Flatland even if the thermodynamic treatment of  a surface in 
formal mathematical  isolation might otherwise suggest it. 

I f  only the 2-sphere leading to (15) below is replaced by a sphere of  
some other dimension, the terms "volume"  and "area"  here could be taken 
as referring to any adjacent dimensions; hence our topic bears on whether 
or not our own universe can be modeled as a surface between one-higher- 
dimensional " b u l k s " - - a  first step toward fractal models. The possibility of  
telltale negative quantities shows a way to distinguish Flatland-like models 
from others. Yet where these negatives appear - -poss ib ly  near a lower critical 
point between two f lu ids--may be so unusual as to put such "telltales" out 
of reach for models of  our own universe. 

2. THE M O D E L  

Quantities pertaining to the surface will be unsubscripted; hence, total 
quantities are subscripted "tot";  1 and 2 refer to the two bulks: 

Sto t = S 1 -{- S 2 -{- S 

Ntot= Nl + N2+ N 
(2) 

Utot = U, + U2 + U 

V~o~= v~+ v~ 

(no volume being assigned to the surface, which "instead" has area A) and 

1 
dU~ +-~ dV~ I.L as1 -- 7 --~ aN~ 

aS2 =-~ aU2 + ~ aV2-~ aN2 (3) 

ds=ldu-~dA-I'~dNT T 
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the P's are pressures; other symbols are as already set. Each N is easily 
generalized to a list N i or vector of c independent "chemicals." 

2.1. Justification 

Associated with a 1-2 difference in pressure, I have drawn the surface 
in Fig. 1 curved. I imagine the edge of this surface to adhere to some ring, 
which is to provide a countervailing force. Figure 1 suggests bulk 1, "sur- 
face," and bulk 2 separated by two thin waists, these waists symbolizing 
the possibility of arbitrarily low conductances connecting the hence almost 
separate parts. I wish to begin this way, so that we may imagine either 1, 
or surface, or 2 to attain a private equilibrium, independent of the other 
two parts, characterized, then, by independent functions S,(U], V~, N,), 
S( U, A, N) ,  $2( U2, V2, N2), although the middle, "pure surface" is some- 
thing of a fiction; indeed, the middle part should really have "a little UI, 
V], N, ,  U2, V2, and N2 also." I wish such separation, so that at first, we 
may consider nine independent partial derivatives 

- - = -  ' . T2 \OU2] v2.N2 T] ~koU,]v1,N 1 --T= - ~  AN' - - =  

Z= 0T/u,,N, ' ' Z=\Wj 2,N2 

T, \ON,]u,.v,' - T =  ~ u.v' T2 = \ ~ / u ~ , v ~  

But then I wish to imagine large conductances for energy and for chemicals, 
installed between the chambers; e.g., let the walls be made of a "highly 
conducting metal," and let the trapped chemical(s) easily diffuse through 
these walls, so that T1 = T2 = T and p~, =/z2 =/~, while yet there is a jump 

~ U 2 , V 2 , N  2 

surface 

U , A , N  

U 1 , V 1 , N  1 

Fig. 1. Waists 
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in pressure, 

because pure transfer of volume between 1 and 2 is forbidden by the 
geometry linking dV1, dVz, and dA. My newly installed large conductances 
destroy the need for narrow waists, which served only to illuminate the 
prior independent meaning of T1, T2, and T, and the possibility of  having 
them unequal, as a context in which the specialization of equation (3) to 
a uniform T = T1 = T2 is physically clear; similarly for /x  =/x~ =/~2: I have 
dwelled on this point because having a jump P~ ~ P2 in the pressure while 
yet temperature and chemical potential are taken exactly uniform looks 
funny! But my story of  the two waists has for the moment reconciled me 
with this conventional asymmetry between P on the one hand and T and 

on the other. 
I now present a derivation of the usual relation 

P, - P2 = 2 Y / r  (4) 

where r is the radius of Curvature of the surface, based only on the present 
thermodynamic model, that is, this derivation makes no direct reference to 
Newtonian force. Expressions (2) and the T,/x uniformity of (3) give us 

dSt~ = iT d Ut~ - T d Nt~ + PIT d v~ + P2T d V2 - ~ dA (5) 

Our 1-2-surface totality is to be isolated from yet other systems, hence 
dUtot = 0, dNtot = 0. Equilibrium demands that Stot be maximum, hence that 
dStot= 0 for the d's a variation from that three-system equilibrium con- 
sequent upon exchanges of shared quantities between the three components 
1, 2, and surface. So (5) becomes 

0 = P~ dV~ +P2 dV2 -~-- dA (6) 
T T T 

I now impose as part of isolation that Vtot = V~ + V2 is fixed. Thus, 

dV2 = -dV~ 

and so 

( P l -  1:'2) dV~ = 5~ dA (7) 

Scaling (3) up from zero quantities at fixed intensives gives us Sl = 
(U l+  P1Vl -p . lNl ) /T1 from 

d S  1 d g l  _j. P1 d V  l [.d~l 
= T1 T1 ---~l dN1 

Similarly, $2 = ( U2 + P2 V2 -/xzNz)/7"2 and S = ( U - ~ A  - / x N ) / T ,  which for 
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T, p~ uniform add to 

Stot = ( Utot - ~ Ntot + Pl Vl + P2 V2 - boA ) / T (8) 

At fixed Utot, Ntot, the total entropy is maximized, then, by maximizing 

( P, V, + P2 V2 - b ~  (9) 

If bo/T were negative, then A would grow indefinitely, causing the surface 
to ramify so as to produce complete mixing, rather than two bulks separated 
by a surface. Existence of a surface, then, requires 

bo/T>-O (10) 

I will drop the = 0 alternative in the sequel, and if negative T is ignored, 
we have simply bo > 0. Then, for given V1, V2, the area A is to be minimized. 
This gives us the classic problem of finding the shape of a given volume, 
say V1, that minimizes its bounding area; I take over the commonly known 
result, that the answer is a sphere. Since the problem is one in the calculus 
of variations, it is also local, so that even if our concern is not with the 
complete boundary of a finite volume V1, but only with a small neighbor- 
hood of that portion of the boundary that separates 1 from phase 2, the 
spherical shape of the small neighborhood is still a valid result. 4 And now 
our "radius r" becomes legitimate. 

I now verify that r indeed satisfies (4), even if the surface is only the 
curved cap of a sector of a sphere, rather than a whole sphere, even though 
this is redundant with Gibbs' argument. 

Let the circular ring to which the surface of radius r is supposed to 
adhere have radius p, and let h be the extent of linear intrusion of phase 
1 into phase 2, i.e., let h be the height of the sector (Fig. 2). 

We had equation (7), or 

dA 
p , - p 2 = b o  (11) 

dV, = - a v 2  

4Denbigh (1966, p. 85) gives 1/r~ + l / r  2 in place of 2 / r  for surfaces with two principal radii 
of curvature. The relevant variational problem, of minimizing the area of a two-sided but 
single surface with a given fixed edge but with no net transfer of volume from one side to 
the other, will have nonspherical solutions if, e.g., the given edge or "ring" cannot itself lie 
on a sphere--but  a nonplanar edge that lies on a sphere o f  the wrong radius shows that the 
problem has more depth that I am reaching here. I will assume that the given ring is a circle, 
and that hence I will have only spheres! Denbigh refers to Gibbs (1948), who gives the 
following argument on p. 299: Transposing his equation (499) to my symbols, it reads 
~ d A -  P~ d V  l - P 2  dV2 =0, my equation (7). Then, continuing in my symbols, " I f  all parts 
of the dividing surface move a uniform normal distance 3D, we shall have ~ dA = (e L + c2)A 3D, 
,5V t = A 619, 6 V 2 = - A  aD; whence 5e(cl + c  2) = P~-P2,  (500)." Here Cl = 1/r  t and c2= 1/r  2 
are the principal curvatures. Unfortunately, a uniform 6D violates fixity of the bounding 
ring; this can be mended by having 6D uniform over a small patch, small so that c 1 and c2 
are sensibly constant there, having 6D decay to zero in a thin band around that patch, and 

zero elsewhere. 
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Fig. 2. S e c t o r  o f  a s p h e r e .  
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Fig. 3. y2 = 2 r x  - x 2 .  

r-X 

I now go through the calculus of evaluating dA/dV1, to get the answer 
2/r, equation (15) (Fig. 3): 

A V1 = volume of sector 

= f ~ry2 dxho=~ f (2rx-x2) dxho 

, x3,, 
= ~ [ r x 2 - - - - !  = 7r rh 2 - - ~  (12) 

\ 3 )x=o 

The area A is easily found by d/de upon r-or+e, h-~h+e or 

d rh2_ ~ 
A = rr d---- ~ 

with dr~de = dh/de = 1, which gives 

A = 27rrh (13) 

Next, ( r -h)2+p 2= r 2 (Fig. 4), gives 

r = (h2+p2)/2h (14) 

Fig .  4.  r = (hZ+p2)/2h. 
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which is useful as p is to be held fixed, not r. Thus, 

(h2+p2 2 h3 1 3 1 ) 2 2 
dVt= Trd ~ h ---~-=-~ h -'[-'~ p2h , dA= 2"rrd h 2 p 

dV'=rr(~ h2+l ) 2 p2 dh, dA = 2rrh dh 

So 

whence, by (14), 

dA 2"rrh 
d V  1 / i t 2 - 1  2; ~ n  --e~p ) 

Lubkin 

where 

o r  

1 U + T  (17) Q=-- S--~ N 

is a modified entropy. 5 
Integrating (16) in a scaling process where T and p, are fixed but the 

area goes from 0 to A gives 

Q= -(5~/ T)A (18) 

q = - b ~  (19) 

51f the surface were regarded as directly open to a bath of energy and matter, then it is Q 
whose maximization would be equivalent to maximization of the entropy of the surface's 
universe, which is perhaps reason enough for looking at Q: in fact, the surface is so intimately 
linked to bulks 1 and 2 that it is Qtot below, not Q, that is to be maximized. 

dA/dV1 = 2 / r  (15) 

From (15) our conclusion (4) follows. 

2.2. The Function 6r i t)  

Much as knowledge of the PE's function S(U, A) is interchangeable 
through a Legendre transformation with the empirically more accessible 
5~(T), so our S(U, A, N) may be had through 5e(T,/z); the details: 

1 dU-~da- T dN dS = -~ 

implies that 

( 1 T ) S - - ~ U +  =-gd-~-I  ~ dQ =- d N dA + Nd-~ (16) 
1 
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in the convent ion that lowercase letters that  refer to surfaces stand for 
quantities per  unit area; thus, q = Q/A. Then (18) in (16) yields 

d ~ =  u d l +  nd - tz  (20) 
T T T 

where o f  course u = U / A  and n = N/A.  
I f  T and ~ are independent  variables, then (20) could give the energy 

per unit area u and the matter  per unit area or self-adsorption n as the 
partial derivatives o f  (5~/T)(1 /T,  - ~ / T ) ;  thus, 5e(T, ~ )  would determine 
u and n. Furthermore,  (17) gives us S = Q + ( 1 / T ) U - ( I ~ / T ) N ,  so s =  
q + ( 1 / T ) u - ( # / T ) n ,  or 

s T T \ O ( 1 / T ) / _ ~ / r  T\O(-~/T)]1/T-Y (21) 

which reaches also to s f rom knowledge of  oW(T,/~). With s, u, n all thus 
parameter ized by T and/x,  the dependence  o f  s on u and n, hence U, A, N 
S( U, A, N) = As( U/ A, N /  A), are implicitly also defined, and so the whole 
the rmodynamics  of  the surface is determined by the funct ion 5e(T, ~).6 

2.3. Reduction to PE 

Putting either ~ or  N arbitrarily to z e r o - - i n  the sense that also dp~ = 0, 
or  dN = 0, etc.; the idea is that  one or the other  o f  these two quantities is 
identically z e r o - - p r o d u c e s  the cardinal equat ions o f  PE. For  example,  our  

u = \ a ( 1 / T ) / - ~ / T  

simplifies in PE to 

d(S~/T) ~ _ r d ~  
u -  d ( 1 / T ~ -  ~ (PE) (22) 

But /x is set by either bulk, 1 or 2, and is usually not zero. The wild 
thought  o f  s tudying an interface between liquid and vapor  for pure light 
would indeed have/z  infinitesimal, but  that  is not  the case for water, helium, 
etc.! With /x not 0, justification for PE must  rest on the self-adsorption n 
being small. I f  N abbreviates N 1 . . . .  , N c, a list of  chemicals, the "se l f" -  
adsorpt ion encompasses  ordinary adsorpt ion,  known often to he large, but 
even for e = 1 chemical only, there is no certitude that n is small. 

For the rest, then, I consider  how to manage  with the extra terms. 

6I call such a function a master function; correspondingly, Gibbs (1948; Denbigh, 1966) calls 
the equation that defines such a function a fundamental equation. On p. 86 Gibbs (1948) 
informs us that Massieu's term is characteristic function. Technically, the preservation of 
mastery in passing from s(u, n) to 5~(T, ~) is identical with the invertibility of a Legendre 
transformation. 
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3. STABILITY OF THE CURVED SURFACE FOR SECTORS LESS 
THAN A HEMISPHERE 

Equation (8), 

1 t Z N t o t + _ ~ V , + ~ V 2 _ ~ A  Sto, = "~ Utot - ~ 

when diminished by reservoir entropies, gives us 

S 1 P1VI+P2V2-9~A  
Qt~ t~ - - r  gt~ + T gt~ - T 

as what is to be maximized for equilibrium of our tripartite system 1-surface- 
2, in contact with a (T,/~) reservoir. This is not just - ( 3 / T ) A ,  the quantity 
Q dealt with earlier. So at fixed T,/z, hence fixed 3, we maximize 

Otot = ( P1 I/1 + ['2 V2 - 9~A ) / T (9) 

I note the similarity of this to an earlier conclusion by repeating the old 
relation's number[ Then, fixing Vtot = V1 + V2 and T >  0 gives us maximiza- 
tion of (P~ - / )2)  V~ - 9~ Since T,/z are given, intensives 5 ~, P~, and P2 are 
also fixed, so V~ , A are the only variables I For given V1, A is to be minimum, 
which again gives us the spherical shape; if the surface is assumed attached 
to a given ring of radius p, then both V1 and A are determined by the height 
h, say, or by the radius r. Equilibrium, to first order, is (P1 - P2) dV~ = 5edA, 
which already gave us P1 - P2 = 23~/ r. The reason for this section is to decide 
when this is stable or not by whether a spherical sector o f  varied r gives us a 
smaller Qtot or not. From equations (9), (12), and (13) we must study the 
function 

( pi - p2) Tr( rh 2 - h3/3) - 3~2 ~rrh 

for fixed radius p of  our assumed ring of attachment; more explicitly, then, 
(14) gives us the study of this function of h: 

" ' { h 2 + P 2 2  f )  h2+P22 (P1 - t'2)'n" ~ h -  - ~f2~r --- ~b(h) (23) 

in the neighborhood of ~b'(h)=0. 
Now, 

~b' ( h ) = ( P, - P2) ~r( h 2 + p2) / 2 - 2 ~r~fh (24a) 

ck"( h ) = ( P, - P2)zrh - 2 ~-5~ (24b) 

For our entropy to be maximum at ho such that $ ' ( ho )=  0, we must 
have $"(ho) negative. Let ' T '  label the bulk at higher pressure, so 

P~-P2>_O 
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Negative h into (24a) produces a positive answer, hence ~b'(ho) = 0 requires 
ho> 0; then 4/ ' (ho)<0 requires this positive incursion ho of 1 into 2 to be 
not too large. Indeed, P~-P2  = 25~ gives 

= ( P1 - 1~ 
~b"(h) ' 250 h - l ) 2 r r 5 0 = ( ~ - 1 ) 2 7 r 5 0  

So ho < r is the condition qS"(h0) < 0 for stability: Our sector must be shorter 
than a hemisphere] 

Now, this conclusion can be reached less laboriously by asking: For 
what sectors will growth of the incursion of 1 into 2 increase the curvature 
of the surface, and so exert a restoring force? If 1 is a complete sphere, 
"incursion" is enlargement of that sphere, which decreases the curvature, 
so a drop or bubble of 1 in 2 is not stable, which forces us to look to the 
sector instead. It is visually obvious that it is for precisely sectors smaller 
than a hemisphere that the effect of incursion on curvature is reversed. But 
to be secure that the conclusion rests entirely on maximizing entropy in the 
model, excluding the notion of force, I deem the pottering above useful. 

In further grubby detail, r is set thermodynamically through T and/x  
by P1 - P2 = 250/r. I imagine that the experimenter provides a ring of radius 
p smaller than r, to which the surface must somehow adhere. If  we start 
out with a fiat meniscus, this will bend until curvature 1/r is attained at 
the local ho maximum of ~h(h), and as it fluctuates a little, it gets restored. 
But for large h, our cubic qS(h) gets arbitrarily large; a large incursion of  
1 into 2 will grow indefinitely. So the phase 2 at lesser pressure is metastable, 
phase 1 is (relatively) stable. The greater stability of 1 as compared to 2 
shows itself by the positive incursion ho> 0 of 1 into 2, yet metastability 
holds at ho, the entire collapse of phase 2 requiring either a large fluctuation 
or quantum tunneling to such h > ho where &(h) begins its eventual rising 
at larger h; this is fluctuation or tunneling to just past a full hemispherical 
incursion. 

Our " r "  is also the critical radius below which whole drops of 1 within 
2 will shrink and above which they will grow. Testing for r by seeking this 
empirical borderline between shrinking and growing whole drops or bubbles 
of  the stable phase within the metastable seems a hard way to go, experi- 
mentally, compared with observing the actual radius r of a locally stable 
meniscus--that  is, provided the magic ring to which the surface adheres is 
available! Of course, another way metastable phase 2 can collapse is imper- 
fection of this ring's magic: a breaking away of  the surface from the ring. 

7Gibbs (1948, pp. 244, 245) similarly finds the hemisphere at the limit of stability. 
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4. DISTINGUISHING THE CONSTRAINT TO THE CLAPEYRON 
SUBSHEET FROM PE 

I f  bulks 1 and 2 are to be equally stable, incursion of more than a 
hemisphere of  the bulk at higher pressure into the other must not be possible, 
and this is accomplished by having r = oe, p~ = / 2 .  This is a Clapeyron 
relation between T and IX: Each bulk has a Gibbs relation 

S = I u + P v - I X N ,  or - - = - -  + P - I X  
T -T T V T 

between its thermal parameters 

(OSI~ 1 (OSI~ P1 ( OSI~ [,~ 
- r '  N , : T '  =---- \ ~ I /  V1,N 1 \oN1/ ubvl T 

and similarly for 2: The intensives S/V, U~ V, and N / V  are to be considered 
functions of  T, P, and IX to read these as relations between T, P, and /x. 
Usually IX is thus considered a function of T and P, the pe r -N  Gibbs 
function, but equivalently, each Gibbs relation may be taken as solved for 
its P, so bulk phase 1 goes with Gibbs pressure function P~(T, IX), bulk 
phase 2 with P2(T, IX), and these are regarded as known from bulk measure- 
ments; then 

PI(T, IX) = P2(T, Ix) (Clapeyron) (25) 

is a relation between T and IX. This is a known relation, dependent  upon 
bulk measurements,  prior to any consideration of surfaces: my convention 
is that all bulk things are "known,"  even if I do not have the necessary 
tables myself[ Thus, all our intensives can, in the case of one chemical, be 
regarded as dependent on T alone, on the Clapeyron subsheet. 

"Only temperature" sounds like "pure  energy," but to take confinement 
of  one's studies to Clapeyron as a justification of PE is wrong[ To make 
sure that this is understood, I first rewrite (20) as 

d(9~/T) d(-IX/T) 
u+n 

d(1/T) d(1/T) 

where the d 's  refer to an arbitrary infinitesimal step (contravariant vector) 
in our (1/T, - I x / T )  manifold; but this may be specialized to a step in the 
Clapeyron direction, where Ix and T are related through (25) thus, 

~/-'(i'/r-)-/Clapeyron=U"[-n \ d ~  /Clapeyron (26) 

For (26) to agree with PE's equation (22), we need either nullity of  self- 
adsorption n or to have Ixclapeyron(T)=Ixo T, Ixo a constant, so that the 
derivative on the right of  (26) is zero, which is all too simple to match the 
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correct behavior of any usual bulk function ~ZClapeyron(T). So having T the 
only independent variable through Clapeyron does not give PE. 

5. FAILURE OF CONVEXITY IN PE, FOR H O T  WATER 

To prove convexity of  the body x ~  < S ( x l , . . . ,  x v) for bulk systems, I 
split the list of additive quantities x i arbitrarily into (x i+  ei) /2  and (x i -  
ei)/2, so the vector e ~ points in an arbitrary direction, and consider the 
process of  physically uniting or fusing two corresponding separated physical 
equilibria. The second law gives us 

that is, the entropy of the equilibrium after fusion exceeds the entropy 
before. Then the proportionality of entropy to the scale of a system allows 
factoring the 1, s, to give the desired relation 

s(x ')  >_ �89 + ~') +~S(x ' -  ~') 

of convexity: geometrically, the entropy at x" lies over the midpoint of  the 
segment connecting the plot of entropy at x" + e" with that at x" - e' .  That 
fusing the separate equilibria at ( x ' •  e ' ) / 2  yields a new equilibrium that 
is indeed at the sum value x" makes use of  the presumed additivity of the 
arguments, when physical bulks are assembled together into larger bulks. 
In particular, volumes add--outs ide of general relativity! 

But if I try to imagine fusing two separate preparations of surface 
equilibria, each at its own proper radius of curvature, I do not get any 
straightforward additivity of  areas. Also, although the Utot'S and Ntot'S do 
add, the energies and matter U and N specific to the two surfaces need not 
add up to the amount specific to the final surface, any discrepancy in the 
sum being compensated by a reverse discrepancy in the energies and matter 
assigned to the bulks: here I refuse to take seriously my early picture of 
surfaces truly isolated from bulks by "waists." Hence, it is probably wrong 
to translate inequalities of convexity for bulks into analogous inequalties 
for surfaces by merely changing "volume" to "area."  What I show in this 
section is that one such inequality is surely wrong taken together with the 
also doubtful model PE, in the case of hot water. 

The relation of convexity I treat is the analogue of the bulk Cv >- O, 
namely, 

? 

CA ~-- 0 (27) 

in PE. This reads 

d u  ? 
- -  _> 0 ( 2 8 )  
dT 
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Fig. 5. Inflection in 5~ for hot water. 

The question marks are intended to remind us that the relationships are in 
doubt. Then equation (22) gives us 

d2S# ? 
- T--7~ --- 0 (29) 

a l -  

The graph T ~  ri~ is to be (?) convex upward. Instead, a plot (Fig. 5) is 
concave upward at the hot end, that is, from inflection at about 500 K, up 
to the critical point near 647 K (Zemansky and Dittman, 1981, p. 425). A 
fit near the critical point Tc with O ~  b~ - T/Tc)  ~ is said to have ~ = 1.2, 
whereas 5e"< 0 would require ~7 < 1, in PE; indeed, this critical exponent 

is said to usually lie between 1 and 2; hence, concavity of oW(T) near the 
critical point is not peculiar to water, but is "usual." I have copied positive 
"u" values, without knowning whether these are reliable (Table I): they 

Table 1 

T, K 5r dyne /cm "u" ,  ergs/cm 2 

273 75.50 143 
373 58.91 138 
473 37.77 129 
523 26.13 122 
573 14.29 111 
623 3.64 80 
647 0 0 
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may have been "deduced"  from 5~(T) by using PE's equation (22). In any 
case, a negative u would seem to be unusual. 

Is the joint failure of  convexity and PE a failure of convexity, of PE, 
or of both? It may be that near criticality, the large fluctuations interact so 
with the meniscus as to effectively make the microscopic density near the 
surface differ from that of either bulk phase, over a large thickness, and 
thus make the self-adsorption n large, despite the fact that at criticality, 
the difference between the bulk densities vanishes. Hence PE is particularly 
suspect near criticality. At any rate, the joint failure is large, holding over 
a range of  about 150 deg; either convexity is truly wrong, or else self- 
adsorption is big. 

6. NEGATIVE ENERGY AND ENTROPY IN PE FOR 
IMMISCIBILITY BETWEEN UPPER AND LOWER CRITICAL 
POINTS 

The examples of such systems of two fluids in Findlay (1951) all have 
two independent chemicals, c = 2, so neglecting all /~'s and n's to get PE 
is perhaps even less plausible than for an interface between liquid and 
vapor with c = 1. I copy Findlay's graph for nicotine and water (Fig. 6). 
Whether PE be roughly valid or grossly off for such systems, my point is 
that using PE, one necessarily gets examples of negative u and s. If either 
one of these must for some reason unknown to me be nevertheless positive, 
then PE is here indeed grossly off. 

Fig. 6. Water and nicotine presumably at 
one pressure. 
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I introduce the abbreviations 

oW/T=~r, 1 / T = r ,  

so that (20) reads 

Lubkin 

- / , / T  = u (30) 

&r = u d r+  n dv (20a) 

and our master function ( S e / T ) ( 1 / T , - t * / T )  is simply ~(r ,  v), and (21) 
reads 

s =  ru+  u n - ~  (21a) 

Of  course here, with c = 2, n dv means ~i=1,2 ni dui, and vn means 5~-~,2 vin~; 
nevertheless, in setting forth "PE"  here, these are omitted, 

PE: d c r = u d r  and s = r u - c r = r d c r / d r - c r  (31) 

o r  

PE: u = d ~ / d r  and T s = s / r =  d ~ / d r - ~ / r  

The smoothness of  such loops as the one in Fig. 6 may suggest that 
there are really no special, intrinsically distinguished points along such a 
loop. However, a horizontal line across the loop is at constant r and u, i.e., 
constant /"water and u, icotine, or vl and u2 for brevity, with only the proportion 
of the two saturated solutions varying linearly in the abscissa. Hence, on a 
r, vl plot (Fig. 7), the loop (say, drawn at one value of u2 instead of at 

C o 

2 0 0 -  

1 8 0 -  

160 - 

1 4 0 -  

1 2 0  - 

1 0 0  - 

80 

6 0  

Upper �9 
critical 1 

/ Lower 
/ critical 

point 

Fig. 7. Horizontal collapse of region L~ + Lz, if a potential is g 
< water made abscissa: a sketch. 
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one total pressure) collapses to a curve. The ends of this curve are the 

critical points ,  where the l inear  var ia t ion of Fig. 6 between the two composi-  
t ions at the same ~- and  u collapses to nothing.  8 

I am guessing that, as in the case of  a critical po in t  j o in ing  l iquid and  
vapor,  this vanish ing  immiscibi l i ty  corresponds  to a vanishing of  ow, and  
hence of  o-. Thus,  the top and  bot tom points  on the loop of Fig. 6 are 
special: 5 p and  o- are 0 there, though positive elsewhere, and  the r e d u n d a n c y  
of composi t ions  at fixed ~" and  u set forth by any horizontal  l ine across the 

loop ceases at those points .  
I draw a quali tat ive o-(~-) (Fig. 8); " u p p e r "  and  " lower"  refer directly 

to T, rather  than  to r = 1/T,  which is why they may seem mislabeled.  Here, 

I have o- go to zero slope at both critical points ,  in imi ta t ion of  hot water 's  
critical exponen t ' s  exceeding 1, but  the conc lus ion  that the slope u is zero 
at a m a x i m u m  of (r, and  that  u is negative between such a m a x i m u m  and  the 

lower critical point,  do not  depend  on this detail. 9 

Positive and  negative s or Ts = s / ' r  = d(r / d'r - ~ / ~ meet where d~r / d~ = 

o'/~-, which is where a radial  l ine through the graph 's  origin touches the 
curve; thus,  s is negative f r o m  such a point  to the lower critical point.  

0 

slope u= O. 

m 

u>O u<O 

�9 < I 

s>O : 

Upper Lower 
crlticalp~nt criticalpo~t 

Fig. 8. Negative s and u near a lower critical point. 

"r 

8A series of such planar plots (Fig. 7) at different v2--analogous to redoings of Fig. 6 at 
various pressures--if assembled along a ~2 axis, would unite upper critical points in a curve 
and lower critical points in another, with the p., Ul, u 2 of transition a 2-sheet stretched between 
both curves; possibly the curves join in a critical loop. Such a loop should not be confused 
with the loop in Fig. 6, which is all at one pressure. 

9My present task is to apply PE, hence my sketch of or(T) may be taken along with my Fig. 
6 from Findlay, all at one P, and on Clapeyron, but a similar sketch could be taken as being 
at one value of u2, with u~ then implicitly varying. 
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Of course a curve with several ripples in its horizontal structure will 
have several places where the sign of u changes; several ripples in the radial 
structure will respectively yield several places where the sign of s changes. 

Note that the detail of  o- going to zero slope at both critical points, 
that is, assuming critical exponents there greater than 1, makes u = 0 there. 
The condition of touch is then also met at such critical points, hence s = 0 
there, too. Perhaps it is natural, as the distinguishability of  a surface fades 
away, for the related energy levels and randomness associated thereto to 
vanish. 

7. NEGATIVE ENTROPY FOR NIC OTINE AND WATER, FREED 
FROM THE M O D E L  OF PE? 

The full formulas (20a), (21a), free from PE, may lead to negative s 
by similar geometrical reasoning, but using a four-dimensional picture. I 
join the formulas to give 

ao- 0or 0or 
S = T - - - ~ -  /"water + /"nicotine - -  O" (32) 

(gT (9/"water a / "n ico t ine  

where the partials are defined in the sense that % /"water, //'nicotine are our 
independent variables. Now imagine o- plotted vertically over a horizontal 
T, /"water, /"nicotine three-space. Equation (32) signifies that where a radial line 
from the origin touches the graph, we again will have s = 0. The basal 3-flat 
at o- = 0 will also touch the cr graph at its critical edge, a loop of criticality 
in (r, Vwater, /Jnicotine) space, provided slopes go to criticality as in the case 
of  water and steam, but our main interest is whether s = 0  elsewhere, 
separating positive from negative s zones; do touching lines exist, other 
than the basal ones? Yes, if there are 3-flats through the origin that touch 
at tr > 0 ;  then the line between the origin and such a point of  tangency is 
an example. Conversely, through a line that touches there is the 3-flat that 
touches. 

Now, if the loop of  criticality at the border of  the o- plot lies well to 
one side of  the origin, then we may pass a 3-flat through the origin that 
misses the whole o- graph by passing over it at too high o- values; then 
rotate this down upon the o- graph until it touches, to have our example. 

But if not, if, for example,  the loop of criticality tangles around the 
origin r = 0, /]water = 0 ,  b'nicotine : 0 ,  existence is no longer clear. However, 
our whole story is at T= l / T > 0 ,  and indeed lies between the positive 
hottest upper  critical Train and the coldest lower critical rmax, SO that the 
origin is well to one side of  the graph, which would seem to support  the 
construction. 
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Yet most of  (z, /"water, //nicotine) space will be forbidden by gross instabil- 
ity, as constrasted with metastability near Ctapeyron. Our s = O, cr > 0 locus 
may be confined to such forbidden territory! 

Indeed, the experimentalist  will probably have data mainly on the 
Clapeyron 2-sheet 

P,(z, /"water, Pnicotine) = P2(  q', Pwater, Pnicotine) 

with only some indications of  behavior off this sheet, because a large step 
P1-P2 in pressure will force r = 25e/(P~- P2) to be small, and hence will 
force the radius p < r of  the ring to be small, which is awkward, and which 
eventually will mask the two-dimensional effects sought, by one-dimensional 
phenomena  of  adhesion to the ring: I f  the 2-sheet s = 0 fails to intersect 
Clapeyron, it probably will also miss the experimentally accessible small 
neighborhood around Clapeyron. 

So it seems to me that the best chance for predicting s < 0 would be 
to show that the change in s due to other terms of the full theory, for some 
large negative value deduced naively from PE, may be estimated as too 
small to reverse the negativity, and not after all from the four-dimensional 
picture of  this section. 

8. S U M M A R Y  OF THE FULL THEORY, FOR c = 1  

This is for one chemical, so hot water is covered, whereas the similar 
but longer expressions for nicotine and water are not. In (30) I introduced 
the variables 

so that 

becomes 

which scales to 

Division by A gives 

Or, more symmetrically, 

T - l / T ,  o-= ~ / T ,  u = - t x / T  

d 6P d A - T  dN as:  T u - y  

dS= ~ 'dU-o 'dA  + u dN 

S = r U - c r A +  uN 

S = 7"/,/-- O'q-  P n  

s + ~ = zu + un (33) 
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Functions s ( u ,  n )  and o-(% v) are literally mutual Legendre transforms: 

d s  = r d u  + v d n  whereas & r  = u d r  + n d v  (34) 

8.1. Theoretically Easy Variables ~r, ~-, v 

I will first consider r, v to be my dominant list of independent variables, 
with ( O / O r ) .  abbreviated as subscript r, and no reminder that "v  be fixed." 
The experimenter is to tabulate (o-, r, v) triples, hence to provide a data 
base reasonably equivalent to function o-(% v); then the otherwise hard to 
measure quantities u, n, and s are simply 

u = ~r., n = cr., s = rcr ~ + vcr~ - ~r (35) 

Because s ( u ,  n )  and ~r(r, v) are mutual Legendre transforms (33)-(35), 
the question of whether s ( u ,  n )  is convex upward is equivalent to the 
question of whether or(r, v) is convex upward: For s ( u ,  n), the convexity 
is negativity of the symmetrix matrix 

Suu Sun I 
Snu San ] 

where of course sub u and sub n mean (a/au) .  and ( a / O n ) u ,  respectively, 
whereas for o'(r, v), the convexity is negativity of the symmetric matrix 

(o-,, o-~) (36) 
O'vr O'vv 

and the situation concerning the Legendre transform has these matrices as 
each the inverse of the other. So instead of directly writing out "CA", the 
strong possibility that v i o l a t i o n  of convexity in PE for hot water persists in 
the full theory, hence is a fact, is most simply expressed as whether negativity 
of the matrix (36) indeed f a i l s .  That is, i , s (u ,  n )  convex upward? 

r r) convex upward?r 
--Orvr --O'vv ~ 

"Positivity of matrix -~r" means positivity of its quadratic form, which is 
computationaly most simply given as 

? 

-~r.. _> 0 (37a) 

? 

-~r~. _> 0 (37b) 

? 

cr,,o'~ - cr2~ _> 0 (37c) 

Furthermore, the strong form of (37c) implies that (37a) is equivalent to 
(37b). Again, (37a)-(37c) express the naive convexity; it is their v i o l a t i o n  

for hot water that would correspond to the tentative conclusion based on PE. 
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8.2. Experimentally Easy Variables tr, t, p 

The variable v = - / ~ / T  is less accessible to the experimenter than the 
others, unless we pretend that all bulk quantities are perfectly known, which 
has been my convention till nowJ ~ Of course, the problem is that the 
chemical potential/~, though the bulk Gibbs function per unit of  N, hence 
bulk-determinate, is not going to be read off a meter! 

Perhaps a more significant reason for writing this section is that it is 
desired, apart  from awkardness o f / z  and hence of u, to have a notation 
that makes it obvious just what things may be taken to refer to Clapeyron, 
what things have to do with first-order deviation from Clapeyron, and what 
with second-order. For the case of  one chemical, both purposes are fulfilled 
by replacing v as independent  variable by p, defined as 

P = (P, - P 2 ) / T  (38) 

Because Clapeyron is P, = P 2 ,  it is here simply p = O ;  various orders of  
deviation from Clapeyron are expressed by corresponding orders of  
differentiation with respect to p. The dependent  quantity of  interest is still 
o-= 5a/T,  which I will not rename, but I will call my complete list of  
independent variables t, p, with 

1 P , (T ,  u ) -  P2(% v) 
t = ~" = -  and p - (39) 

T T 

The reason for renaming the unchanged variable z is that subscript ~ implies 
that v is held constant, whereas subscript t implies that p is held constant, 
and it would not do to confuse these! 

8.3. What the Experimenter Takes as Data, for the Surface 

The temperature T or coldness t = 1/T, the two bulk pressures PI and 
P2, hence p = ( P 1 - P 2 ) / T ,  are k n o w n - - a n d  either the surface tension A ~ 
direct ly--hence also cr = ~ / T ,  is k n o w n - - o r  the radius of  curvature r of  
the meniscus, perhaps optically, as then ~ is accessible from ~ = l(p~ _ P2)r, 

or o" = �89 Thus, the experimenter tabulates quintuples (o-, t, p, P1, P2)--to 
put it a bit redundantly. From these, of  course the triples o-, t, p are a data 
base for the function o-(t, p). The reason P~ or P2 is wanted separately from 
cooking up p is that the function v(t ,  p )  will also be needed. Either T = l / t  

and P1 and the pe r -N  Gibbs free energy p from bulk tables for phase 1, 
or T and P2 and the same for phase 2, gives us v = - p ~ / T ;  on different 
sides of  Clapeyron either bulk 1 or bulk 2 will be more likely available in 

1~ is indeed explicitly Gibbs' convention, too, in his treatment of surfaces or "capillarity'" 
(Gibbs, 1948, footnote on p. 231). 
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tables. Of  course,  the v so deduced,  d isp layed in (v, t ,p) triples, gives us 
the desired data  base  for  v( t, p) ;  thus, the raw o-, t, p, P~, P2 plus bulk tables 
give us the desired (o-, v, t ,p),  f rom which o-(t,p) and v( t ,p )  b e c o m e  
regarded as known.  Then  a mess of  calculus gets us to last sect ion 's  
significant derivatives of  o-(r, v) as follows; however ,  the next  subsect ion 
bypasses  the mess!  

The general  device needed  is to relate first derivatives f = Of/Ox ~ of  a 
quant i ty  dependen t  on v variables  x ~ , . . . ,  x ~, and second derivatives f s  to 
derivatives f l  = Of/Ox" and cor responding  fls of  the same quantity f, referred 
to v other  variables x ' l , . . . ,  x '~. Then (Veblen,  1962) the chain rule 

OX a 
f l = 0 - ~ f  ~ (40) 

t ransforms the first derivatives,  and 

[ 0(0xa)] 02x  
fb  =~x,S ~ x . f  a -Ox---jOx--~faq Ox,i Ox,Sf~ b (41) 

uses both  old first and second derivatives to give the new second derivatives. 
Here,  " f "  is o f  course  o-, v is 2, and x 1= t, x2=p,  whereas  x ' l = r ,  

x '2 = v, because  we are going from the t, p -based  data  to the theoret ical ly  
desired r, v basis. Equat ion  (40) becomes  

1 p t 
o-~ = - -  o-p, o-~ = o-~ - - -  % (42) 

vp vp 

and (41) becomes  

1 v, v, 2 '~ v, v~ 
o'~ = - - -  v,, + 2 -5  1)tp - - ~  l~pp ] O-p + o-tt - -  2 - -  o-,p + - 5  o-pp 

vp Vp Up / Vp Vp 

1 1 
Ovvv = 3 PPPO-P-~-SO-PP (43) 

lJp P p 

(v~p 1 ) v, 
O'rv = Vpp - -  ~ Ptp O-p - -  - 5  o-pp 

l.'p Pp 

From these, not much  cancels in getting the determinant ;  I get 

( ) (1  
2 --  2 v ,  ~ - -  ~ VppO'p -~- - 5  o-pp f f  rro-vv - -  o-.rv = O'tt PP l~p l,'p 

( 1 v, ) 1 2 2  
+ - ~  vt, + - ~  v,p o-po-pp + ~  (vttvpp - vtp)o-p (44) 

1..'p Pp  Pp 
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Suppose we are only interested in u, n, s, and convexity of  specific 
heats, that is, negativity of  

O'v7 O'vv ~ 

on Clapeyron. Then, whereas all quantities in (42)-(44) are to be evaluated 
at p = 0, on the sheet, yet o-p in (42) shows that first-order deviation from 
O'Clapeyron(t ) or J~Clapeyron(T) must be known to reliably get u, n, and s, even 
on Clapeyron. Of  course, 

tr, = d ( 1 / T )  

does not involve any deviation from Clapeyron, and neither does o-t,. 
Similarly, o', e involves only first-order deviation, but the most severe test 
of  an experiment is O-pp, unfortunately present in each of  the quantities (43), 
(44) relating to convexity, which brings in experimental assessment of  
deviation to the second order. 

Degeneration to PE may be obtained by using o-(t, 0) in place of  o-(t, p)  
on the right of  (42)-(44), which puts all p-subscripted ~r's to zero, leaving 
only cr~-~ o', and o-~ ~ ~r,, as nonzero outputs in PE. Thus, the anticonvex 
curvature in PE for hot water would have o-~ positive, which makes that 
the most interesting element of  the o-.. matrix to get correctly. 

It should be stressed that weak dependence on p, that is, smallness of  
p derivatives, should not be thought of  as making experiments futile, because 
certification of  such smallness would establish the otherwise unsupported 
conclusions of  PE: experiments need not aim fine enough to bound the p 
derivatives away from zero. 

8.4. Bypassing the Mess  

Let us back up to where our experimenter has first used bulk tables, 
to get (tr, v, t =  %p) quadruples. He or she foolishly extracted o-(t ,p) and 
v(t,  p) functions of  triples, instead of (o-, % v) triples, a direct data base for 
the desired function tr(~-, ~,)! 

T h e  only virtue in having elaborated the messy route is to have clarified 
just how much is known from tension data strictly on Clapeyron, o-(t, p = 0); 
none of our quantities u, n, s, or tr.. is completely free of  data from curved 
menisci. 

9. R E M A R K S  O N  T H E  FULL T H E O R Y ,  FOR c = 2  

This is for nicotine and water, not because the story of convexity will 
go to a 3 by 3 matrix, which is dull, but because PE "predicts" that the 
easier quantities u, n, and s will show negative u and s near a lower critical 
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point, which is exciting, and Findlay (1951) gives no example of  a lower 
critical point for a single chemical. The theoretical desideratum is the 
function o-(r, ~q, u2), where z,i = - / x i / T  and i = 1 for water, i = 2 for nicotine; 
we have two awkward chemical potentials. The raw, once-redundant quintu- 
ples of the last section must become similarly once-redundant sextuples 
(tr, t, p, P~,/92, N ~ : N2), where the ratio N ~ : N 2 of amounts of  water to 
nicotine is new. P1 and P2 are total pressures of phases 1 and 2, not "partial  
pressures"! I f  there are bulk tables for such a mixture, then t, P~, and 
N l :  N 2 into the table for phase 1, or t, P2 and N 1 : N 2 into table 2, should 
come up with both ~,~ and u2. Then the bypass directly to (or, t, Ul, z'2) would 
seem preferable to any intermediate stage that featured p as a variable, for 
the sake of separating deviations from Clapeyron. 

The likely absence of bulk tables for nicotine-water would set a pre- 
mium on directly measuring the chemical potentials. Semipermeable mem- 
branes to pods of pure water and pure nicotine, plus measurement of  each 
pod's  pressure, would of course lead to the separate chemical potentials 
from separate tables for pure water and pure nicotine. The smallness of  the 
molcule H20 should make a membrane selectively permeable to water 
feasible; a passive, wide-open hydrophobic channel for nicotine is harder 
to imagine. Whether some chemists' parametrization of thermodynamics 
for c = 2, oriented to yields in reactions, is fine enough to use for one or 
both ~,'s in my chosen task of fixing signs for the surface's densities of 
energy and entropy is a topic I do not enter upon now. 

10. FROM AMBIGUITY TO OVERDETERMINATION 

What ambiguity arises from the arbitrariness that would be involved 
in drawing some particular mathematical surface to part V~ot into V1 and 
V2? For each extensive property except volume, we have an equation of 
f o r m  Xto  t = X 1 + X --t- X 2 ,  and if we generally use small letters for densities, 
Xtot = Xl V~ + xA + x2 V2. A shift 6 of  a planar dividing surface A perpen- 
dicular to itself would make V~ ~ VI + A6, V2-~ V2- A6, hence would 
increase the bulk X by (x~-x2)A6, so that to keep Xto~ fixed, we would 
have to change the density per unit area x to x - ( X l -  x2)& But our model 
computes these densities unambiguously from the master function (Gibbs '  
term is "fundamental  equations") b~ T,/x) or 0-(7, v). Indeed, the arguments 
are intensives, which also apply to either bulk, and if one sought to defend 
the ambiguity of  densities to shifts in the choice of  mathematical surface, 
one would have to seek ambiguity in the tension 5 e. Either I go to Newtonian 
force to dispel this, and monitor  dynamically by measuring the force exerted 
upon the ring of attachment, or else I appeal to 5 e = l r (p !  - P 2 )  and measure- 
ment of  the radius of  curvature of  a spherical surface. Now here it may be 
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thought one has the originally posed sort of  ambiguity, since for a curved 
surface a shift may be imagined that would alter the radius, but by using 
small P~ - P2, large r will be involved, hence any few-Angstrom ambiguity 
in r will be of  no import  to 5e; and r measured by scat ter ing--say l ight--is 
associated with the physical surface rather than with any mathematical  
surface subject to arbitrary conceptual shifts. 

Hence all densities, 5e, r, and even area A are empirically determinate, 
given our spherical sector of  basal radius p and radius r. The experimentalist 
will be much less willing to set up to monitor  Stot, Utot, Ntot, Vtot, but we 
must in principle take these as determinate, too; these are c + 3 determinate 
extensives. But the indeterminates left in our model are then only two, V~ 
and V2, whence my conclusion, that the model  is in principle ( c +  1)-fold 
overdeterminate!  In the case c = 1, failure to monitor  two totals, e.g., Stot 
and Utot, would obscure this point. 

Further, monitoring of totals must be excruciatingly sharp, to catch 
the model with its pants down: We are trying to see the heat lost from bulk 
in making more interface, by monitoring the channel of  heat between the 
bath and the bulk. Any other surfaces will add comparable shifts, however, 
unless we can find boundary-free compact  gobs of  space for containers. I f  
we accept unknown shifts as inevitable, we thereby give up any possible 
empirical criticism of the model on this score of  overdeterminancy. 

To sum up, then: the master function 5e(T, ~z) or o-(r, ~) so sharply 
delimits everything that, if the totals be taken as fixed, the apport ionment  
of  Vtot into V~ and V2 is fixed; surprisingly, there is no consistent invariance 
of the model to a shift of  mathematical  dividing surface. 

It is my late reading in Gibbs, who has some pages on shifts, that 
causes me to include the above; otherwise, having concluded that none are 
possible, it seems perhaps well tO omit it. 

11. GIBBS GENERALIZED FORCES C1 AND C2 

I have just seen that Gibbs (1948, p. 225) puts terms C16c~ + C26c2 into 
his differential of energy, where c~ = 1/r l  and c2 = 1/r2 are the principal 
curvatures. My first reaction was that my own treatment must be an 
inadequate truncation! Gibbs immediately rewrites this as 

�89 c~ - c2)( ~e~ - &2) + �89 c~ + C2)( ~c~ + ~c~) 

in terms then of what I will call twist �89 - c2) and mean  curvature �89 c~ + c2). 
So, for spheres, only the second term counts. Then he gives an account I 
find confusing, involving some nonlinear shifts of  mathematical  surface, to 
conclude that the generalized force C~ + C2 may be made to vanish, unless 
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one wished to use shifts to achieve alternative simplifications, so even on 
the basis of  Gibbs '  text, I am not really in bad shape. 

I wish furthermore to give two arguments against so complicating the 
model. 

First, for the purpose here of  learning about small departures from 
Clapeyron, the terms should be too small to matter; here I think Gibbs 
agrees. A definite departure varies it and itClapeyron(T), hence leads to a 
definite mean curvature through 

P,( T, i t ) -P2(T ,  it) 
- cl  + c2 ( 4 a )  

Y(T, it) 

but the near-neighbor effects upon which dynamical 9 ~ is based are expected 
to be a response to the immediately local effect of  the change in it, and not 
a response to the distant geometric bending expressed by curvature. ~ 

Second, T, it, and the system's response already control the mean 
curvature, so there is no call to introducing that as a new coordinate. This 
would eliminate C~ + (?2 identically, without any shifts of  mathematical  
surface. Combined with my strategy of dealing with only spherical surfaces, 
no twist, both C~ and C2 happily disappear from the discussion. 

12. H E L I U M  

This writeup of notions a few years old is provoked by a lecture of  
Akira Ikushima's  describing ongoing careful experimental studies of  the 
tension of the interface between liquid and vapor  for 3He, 4He, and mixtures 
of  both, but as my notions have no specific roots in helium, I have chosen 
to mention this only here at the end, as a sort of  acknowledgment.  Of  course 
I am saying that a thorough study must deal with curved surfaces, and here 
my picture of  spontaneous tethering of a curved meniscus to a ring of radius 
p may be unproducible, partly because of creeps associated with super- 
fluidity, partly because helium may be expected not to stick to anything. If  
it is this bad, then one can yet study unstable whole spheres- -one  advantage 
of which is the exclusion of phenomena associated with contact against a 
material ring extraneous to the theory. 

But perhaps rings made of the most reactive agents known might show 
some stickiness, perhaps rings of  free radicals, deposited themselves in the 
cold. 

HThis microscopic hand-waving would assess the whole effect of  twist to be negligible, even 
for aspherical shapes - -bu t  note that (4a) then specifies that these shapes be of constant mean 
curvature, that is, we have this constancy for the relevant generalized problem of  Plateau if 
possible dependence at fixed T and ~ of  tension b ~ on twist be neglected. 
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I have also exc luded  de fo rma t ions  due  to gravity;  one can imagine  
dea l ing  with smal l  surfaces  to avo id  this,  bu t  then the one -d ime ns iona l  edge 
a long the r ing would  b e c o m e  impor tan t ;  or  one can wai t  for  a l a bo ra to ry  
in free fall!  

I k u s h i m a  uses v ib ra t ions  in his measuremen t s ,  and  these involve a 
range,  p r o b a b l y  slight,  in curvature  o f  the surface.  Large vibra t ions  cou ld  
be ano the r  avenue  to s tudy  effects in tegra ted  over  a range o f  curvatures  
with a var iab le  spread .  Hea t ing  from d i ss ipa t ion  o f  large v ibra t ions  may  
veto such an a p p r o a c h ;  fa i lure  to reach equ i l ib r ium quickly  cou ld  pose  a 
second  veto. 
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